
DG
PHP
Documen-
tation
Group

the • defi nitive
php  reference

in • print

5
Edited by

Gabor Hojsty

Installation, Configuration,
Language Reference, Function
Reference & More!

PHP
Documen-
tation
Group

5
 Mehdi Achour Friedhelm Betz Antony Dovgal

 Nuno Lopes Philip Olson Georg Richter

 Damien Seguy Jakub Vrana and several others

Edited by Gabor Hojtsy

Inez Caldwell
PUBLISHING

Toronto and Little Ridge

Table of Contents
I. Getting Started
Chapter . Introduction . page 

 . A Simple Tutorial . 

II. Installation and Configuration

 . General Installation Considerations 
 . Installation on Unix Systems 
 . Installation on Mac os x 
 . Installation on Windows Systems 
 . Installation of pecl Extensions. 
 . Problems ? . 
 . Runtime Confi guration 

III. Language Reference

 . Basic Syntax . 
 . Types . 
 . Variables . 
 . Constants . 
 . Expressions . 
 . Operators . 
 . Control Structures . 
 . Functions . 
 . Classes and Objects (php ) 
 . Classes and Objects (php ) 
 . Exceptions . 
 . References Explained . 

IV. Security
 . Introduction . 
 . General Considerations 
 . Installed as cgi Binary. 
 . Installed as an Apache Module 
 . Filesystem Security . 
 . Database Security . 

 PHP Documentation Group iii

iv Table of Contents

 . Error Reporting . 
 . Using Register Globals 
 . User Submitted Data . 
 . Magic Quotes . 
 . Hiding php . 
 . Keeping Current . 

V. Features
 . Http Authentication with php 
 . Cookies . 
 . Sessions . 
 . Dealing with xforms . 
 . Handling File Uploads 
 . Using Remote Files . 
 . Connection Handling . 
 . Persistent Database Connections. 
 . Safe Mode . 
 . Using php from the Command Line. 

Appendices
 A. List of Supported Protocols/Wrappers 
 B. List of Available Filters 
 C. List of Supported Socket Transports 
 D. Php Type Comparison Tables 
 E. List of Parser Tokens . 
 F. About the Manual . 
 G. Open Publication License. 
 H. Function Index . 

 PHP Documentation Group 59

Chapter 10. Basic Syntax
10.1 Escaping from HTML

When php parses a fi le, it looks for opening and closing tags, which tell php
to start and stop interpreting the code between them. Parsing in this manner
allows php to be embedded in all sorts of diff erent documents, as everything
outside of a pair of opening and closing tags is ignored by the php parser.
Most of the time you will see php embedded in html documents, as in this
example:

<p>This is going to be ignored.</p>
<?php echo 'While this is going to be parsed.'; ?>
<p>This will also be ignored.</p>

You can also use more advanced structures:

Example 10-1. Advanced Escaping

<?php
if ($expression) {
 ?>
 This is true.
 <?php
} else {
 ?>
 This is false.
 <?php
}
?>

Th is works as expected, because when php hits the ?> closing tags, it simply
starts outputting whatever it fi nds until it hits another opening tag. Th e ex-
ample given here is contrived, of course, but for outputting large blocks of text,
dropping out of php parsing mode is generally more effi cient than sending all
of the text through echo() or print().

60 Chapter 10. Basic Syntax

Th ere are four diff erent pairs of opening and closing tags which can be used
in php. Two of those, <?php ?> and <script language="php"> </script>,
are always available. Th e other two are short tags and asp style tags, and can
be turned on and off from the php.ini confi guration fi le. As such, while some
people fi nd short tags and asp style tags convenient, they are less portable,
and generally not recommended.

Note: If you are embedding php within xml or xhtml you will need to use the
<?php ?> tags to remain compliant with standards.

Example 10-2. PHP Opening and Closing Tags

<?php echo 'if you want to serve XHTML or XML documents, ¬
do like this'; ?>

<script language="php">
 echo 'some editors (like FrontPage) don’t like ¬
 processing instructions';
</script>

<? echo 'this is the simplest, an SGML processing ¬
instruction'; ?>
<?= expression ?> This is a shortcut for "<? echo ¬
expression ?>"

<% echo 'You may optionally use ASP-style tags'; %>
<%= $variable; # This is a shortcut for "<% echo . . ." %>

While the tags seen in examples one and two are both always available,
example one is the most commonly used, and recommended, of the two.

Short tags (example three) are only available when they are enabled via the
short_open_tag php.ini confi guration fi le directive, or if php was confi gured
with the --enable-short-tags option.

Note: If you are using php  you may also enable short tags via the short_tags()
function. Th is is only available in php !

.

.

.

 PHP Documentation Group 61

ASP style tags (example four) are only available when they are enabled via the
asp_tags php.ini confi guration fi le directive.

Note: Support for asp tags was added in ...

Note: Using short tags should be avoided when developing applications or libraries
that are meant for redistribution, or deployment on php servers which are not
under your control, because short tags may not be supported on the target server.
For portable, redistributable code, be sure not to use short tags.

10.2 Instruction separation

 As in C or Perl, php requires instructions to be terminated with a semicolon
at the end of each statement. Th e closing tag of a block of php code automati-
cally implies a semicolon; you do not need to have a semicolon terminating the
last line of a php block. Th e closing tag for the block will include the immedi-
ately trailing newline if one is present.

<?php
 echo 'This is a test';
?>

<?php echo 'This is a test' ?>

<?php echo 'We omitted the last closing tag';

Note: Th e closing tag of a php block at the end of a fi le is optional, and in some
cases omitting it is helpful when using include() or require(), so unwanted
whitespace will not occur at the end of fi les, and you will still be able to add headers
to the response later. It is also handy if you use output buff ering, and would not
like to see added unwanted whitespace at the end of the parts generated by the
included fi les.

62 Chapter 10. Basic Syntax

10.3 Comments

PHP supports C, C++ and Unix shell-style (Perl style) comments.
For example:

<?php
 echo 'This is a test'; // This is a one-line ¬
 c++ style comment
 /* This is a multi line comment
 yet another line of comment */
 echo 'This is yet another test';
 echo 'One Final Test'; # This is a one-line ¬
 shell-style comment
?>

Th e “one-line” comment styles only comment to the end of the line or the
current block of php code, whichever comes fi rst. Th is means that html
code after // ... ?> or # ... ?> will be printed: ?> breaks out of php mode
and returns to html mode, and // or # cannot infl uence that. If the asp_tags
confi guration directive is enabled, it behaves the same with // %> and # %>.
However, the </script> tag doesn’t break out of php mode in a one-line
comment.

<h1>This is an <?php # echo 'simple';?> example.</h1>
<p>The header above will say 'This is an example'.</p>

C style comments end at the fi rst */ encountered. Make sure you don’t nest C
style comments. It is easy to make this mistake if you are trying to comment
out a large block of code.

<?php
/*
 echo 'This is a test'; /* This comment will ¬
 cause a problem */
*/
?>

 PHP Documentation Group 63

Appendix K.
List of Reserved Words
List of Keywords
Predefined Variables
Predefined Classes
Predefined Constants

Th e following is a listing of predefi ned identifi ers in php. None of the identi-
fi ers listed here should be used as identifi ers in any of your scripts. Th ese lists
include keywords and predefi ned variable, constant, and class names. Th ese
lists are neither exhaustive or complete.

List of Keywords

Th ese words have special meaning in php. Some of them represent things
which look like functions, some look like constants, and so on—but they’re
not, really: they are language constructs. You cannot use any of the following
words as constants, class names, function or method names. Using them as
variable names is generally ok, but could lead to confusion.

and , or, xor, __FILE__ , exception (php ), __LINE__ , array(),
as , break , case , class , const , continue , declare , default ,
die(), do , echo(), else , elseif, empty(), enddeclare , endfor,
endforeach , endif, endswitch , endwhile , eval(), exit(),
extends , for, foreach , function , global , if, include(),
include_once(), isset(), list(), new , print(), require(),
require_once(), return(), static , switch , unset(), use , var,
while , __FUNCTION__ , __CLASS__ , __METHOD__ , final (php ),
php_user_filter (php ), interface (php ), implements (php ),
extends , public (php ), private (php ), protected (php ),
abstract (php ), clone (php ), try (php ), catch (php ),
throw (php ), cfunction (php  only), old_function (php  only),
this (php  only).

64 Appendix K. Reserved Words

Predefined Variables

Since php .., the preferred method for retrieving external variables is with
the superglobals mentioned below. Before this time, people relied on either
register_globals or the long predefi ned php arrays ($HTTP_*_VARS).
As of php .., the long php predefi ned variable arrays may be disabled
with the register_long_arrays directive.

Server variables: $_SERVER

Note: Introduced in ... In earlier versions, use $HTTP_SERVER_VARS.

$_SERVER is an array containing information such as headers, paths, and script
locations. Th e entries in this array are created by the webserver. Th ere is no
guarantee that every webserver will provide any of these; servers may omit
some, or provide others not listed here. Th at said, a large number of these
variables are accounted for in the cgi . specifi cation, so you should be able
to expect those.

Th is is a ‘superglobal’, or automatic global, variable. Th is simply means
that it is available in all scopes throughout a script. You don’t need to do a
global $_SERVER; to access it within functions or methods, as you do with
$HTTP_SERVER_VARS.

$HTTP_SERVER_VARS contains the same initial information, but is not an
autoglobal. (Note that $HTTP_SERVER_VARS and $_SERVER are diff erent
variables and that php handles them as such).

If the register_globals directive is set, then these variables will also be made
available in the global scope of the script; i.e., separate from the $_SERVER and
$HTTP_SERVER_VARS arrays. For related information, see the security chapter
titled Using Register Globals. Th ese individual globals are not autoglobals.

You may or may not fi nd any of the following elements in $_SERVER. Note that
few, if any, of these will be available (or indeed have any meaning) if running
php on the command line:

 PHP Documentation Group 65

'PHP_SELF' Th e fi lename of the currently executing script, relative to
the document root. For instance, $_SERVER['PHP_SELF'] in a script at the
address http://example.com/test.php/foo.bar would be /test.php/foo.bar.
Th e __FILE__ constant contains the full path and fi lename of the current
(i.e. included) fi le. If php is running as a command-line processor this variable
contains the script name since php ... Previously it was not available.

'argv' Array of arguments passed to the script. When the script is run on
the command line, this gives C-style access to the command line parameters.
When called via the GET method, this will contain the query string.

'argc' Contains the number of command line parameters passed to the
script (if run on the command line).

'GATEWAY_INTERFACE' What revision of the cgi specifi cation the server
is using; i.e. 'CGI/1.1'.

'SERVER_NAME' Th e name of the server host under which the current script
is executing. If the script is running on a virtual host, this will be the value
defi ned for that virtual host.

'SERVER_SOFTWARE' Server identifi cation string, given in the headers when
responding to requests.

'SERVER_PROTOCOL' Name and revision of the information protocol
via which the page was requested; i.e. 'HTTP/1.0';

'REQUEST_METHOD' Which request method was used to access the page;
i.e. 'GET', 'HEAD', 'POST', 'PUT'. Note: php script is terminated after send-
ing headers (it means after producing any output without output buff ering), if the
request method was HEAD.

'REQUEST_TIME' Th e timestamp of the start of the request. Available
since php ...

'QUERY_STRING' Th e query string, if any, via which the page was accessed.

66 Appendix K. Reserved Words

'DOCUMENT_ROOT' Th e document root directory under which the current
script is executing, as defi ned in the server’s confi guration fi le.

'HTTP_ACCEPT' Contents of the Accept: header from the current request,
if there is one.

'HTTP_ACCEPT_CHARSET' Contents of the Accept-Charset: header from
the current request, if there is one. Example: 'iso-8859-1,*,utf-8'.

'HTTP_ACCEPT_ENCODING' Contents of the Accept-Encoding: header
from the current request, if there is one. Example: 'gzip'.

'HTTP_ACCEPT_LANGUAGE' Contents of the Accept-Language: header
from the current request, if there is one. Example: 'en'.

'HTTP_CONNECTION' Contents of the Connection: header from the
current request, if there is one. Example: 'Keep-Alive'.

‘HTTP_HOST' Contents of the Host: header from the current request,
if there is one.

'HTTP_REFERER’ Th e address of the page (if any) which referred the user
agent to the current page. Th is is set by the user agent. Not all user agents will
set this, and some provide the ability to modify HTTP_REFERER as a feature. In
short, it cannot really be trusted.

'HTTP_USER_AGENT' Contents of the User-Agent: header from the
current request, if there is one. Th is is a string denoting the user agent being
which is accessing the page. A typical example is: Mozilla/4.5 [en] (X11;
U; Linux 2.2.9 i586). Among other things, you can use this value with
get_browser() to tailor your page’s output to the capabilities of the user agent.

'HTTPS' Set to a non-empty value if the script was queried through
the https protocol.

'REMOTE_ADDR' Th e ip address from which the user is viewing the
current page.

